

© 2001 Université de Liège Section de Chimie Groupe Transition http://www.ulg.ac.be/grptrans

Conditions d'utilisation des versions électroniques des tests de chimie

Vous pouvez:

- consulter les versions électroniques des tests sur un ou plusieurs ordinateurs
- imprimer un ou plusieurs tests (p. ex pour une distribution en classe) en mentionnant l'origine
- distribuer gratuitement un ou plusieurs fichiers PDF ou ZIP complets et sans modification à d'autres personnes

Vous ne pouvez pas:

- modifier ou traduire une version électronique d'un test
- enlever ou modifier les logos ou les copyrights
- recopier entièrement ou partiellement un test pour l'inclure dans un autre projet
- mettre à disposition les versions électroniques des tests sur un autre site internet
- inclure les fichiers ZIP ou PDF dans un projet commercial (p.ex. un CD-ROM d'un périodique) sans autorisation écrite préalable du Groupe Transition

Responsable administratif: André Cornélis Université de Liège Institut de Chimie B6 Sart-Tilman B 4000 Liège (Belgique)

Fax: +32-4-3664738

Email: Andre.Cornelis@ulg.ac.be

© 2001 Université de Liège Section de Chimie Groupe Transition

UNIVERSITE DE LIEGE Section de Chimie – Groupe Transition

Prétest des bases chimie (septembre 2001)

Effectuez un seul choix par question.

- Il peut arriver que certains choix (par exemple 5) ne soient pas proposés pour certaines questions.
- Les choix 6 (« Toutes ») et 7 (« Aucune ») sont proposés pour toutes les questions.
- Lorsque la proposition 6 (« Toutes les propositions ci-dessus sont correctes ») est d'application, c'est uniquement la case correspondant à ce choix 6 qu'il faut noircir.

Répondez à l'aide du formulaire de réponses destiné à la lecture optique. Seul le tableau périodique fourni en annexe peut-être utilisé. Durée : 70 minutes

Question 1

Repérez la proposition correcte.

Lorsqu'on le dissout dans l'eau, le formiate (méthanoate) de sodium NaHCO2 solide

- 1) ne se comporte pas comme un électrolyte fort
- 2) forme du NaHCO₃
- 3) se décompose avec départ de CO₂ gazeux
- 4) se dissocie en cations HCO₂ et anions Na hydratés
- 5) se dissocie en anions HCO₂ et cations Na⁺ hydratés
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 2

Quel est dans le couple ci-après celui qui rassemble des composés où le phosphore est dans des états d'oxydation différents (au sein des deux membres du couple) :

- 1) H₃PO₄ / PCl₅
- 2) H₃PO₄ / Na₃PO₄
- 3) PCl₃/H₃PO₃
- 4) $NaH_2PO_4 / Ca_3(PO_4)_2$
- 5) PCl₅ / H₃PO₃
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 3

Quelle est la proposition correcte ?

- 1) NaNO₃ et KNO₂ sont tous deux des nitrites
- 2) NaNO₃ et KNO₂ sont tous deux des nitrates
- 3) NaNO₃ et KNO₃ sont tous deux des nitrites
- 4) NaNO2 et KNO2 sont tous deux des nitrites
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Repérez la proposition correcte.

L'équation chimique correspondant à la dissociation du carbonate de potassium K₂CO₃ solide dans l'eau est:

1)
$$K_2CO_3$$
 (s) $\xrightarrow{H_2O(1)}$ K^{2+} (aq) $+ CO_3^{2-}$ (aq)

2)
$$K_2CO_3$$
 (s) $\xrightarrow{\text{H}_2O (1)}$ K^+ (aq) + 2 CO_3^- (aq)

3)
$$K_2CO_3$$
 (s) $\xrightarrow{\text{H}_2O (1)}$ 2 K^+ (aq) + 2 CO_3^{2-} (aq)

4)
$$K_2CO_3$$
 (s) $\xrightarrow{\text{H}_2O (1)}$ K^+ (aq) + 2 CO_3^- (aq)

5)
$$K_2CO_3$$
 (s) $\xrightarrow{\text{H}_2O (l)}$ 2 K^+ (aq) + CO_3^{2-} (aq)

- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 5

La masse atomique relative du soufre est 32,07. Cela signifie que 32,07 est la valeur du rapport de la masse moyenne d'un atome de soufre :

- 1) à la masse atomique relative du carbone
- 2) au 1/12 de la masse d'une mole du nucléide $^{12}_{~6}\mathrm{C}$
- 3) à la masse d'un proton
- 4) à la masse molaire du carbone
- 5) à la masse d'un atome ${}_{1}^{1}H$
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 6

La formule qui permet de calculer la concentration en substance titrée (C_1) dans une prise d'essai de volume V_1 réagissant mole à mole avec exactement un volume V_2 de titrant à la concentration C_2 est

$$C_1 \times V_1 = C_2 \times V_2$$

On titre 20,0 mL d'une solution aqueuse d'acide chlorhydrique de concentration inconnue par 15,3 mL d'une solution aqueuse d'hydroxyde de sodium à la concentration de 0,250 mol/L. Quelle est, avec le bon nombre de chiffres significatifs, la concentration molaire de la solution aqueuse d'acide chlorhydrique ?

- 1) 0,191 mol/L
- 2) 0,1913 mol/L
- 3) 0,19130 mol/L
- 4) 0,2 mol/L
- 5) 0,19 mol/L
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 7

On dispose d'une solution aqueuse à 14,205 g/L en Na_2SO_4 . On désire engager 0,10 mole de cations sodium dans une réaction chimique. Pour ce faire, quel volume de la solution ci-dessus faut-il mettre en œuvre ?

- 1) 0,25 L
- 2) 0,20 L
- 3) 2,0 L
- 4) 1,0 L
- 5) 0,50 L
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Choisissez la proposition correcte.

Dans la molécule de 3-éthyl -2,2-diméthyl hexane, on trouve un nombre total de groupes -CH₂- égal à :

- 1) un
- 2) deux
- 3) trois
- 4) quatre
- 5) cinq
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 9

Choisissez la proposition correcte.

Parmi les molécules dont la formule est donnée ci-après, on trouve une fonction amine dans :

- 1) la molécule A
- 2) la molécule B
- 3) la molécule C
- 4) la molécule D
- 5) la molécule E
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 10

Vous disposez d'un échantillon de 50,0 mL d'acétone CH₃COCH₃ à 20 °C. A cette température, l'acétone est un liquide dont la masse volumique est de 790 g/L. La concentration molaire (molarité) en acétone de cet échantillon vaut :

- 1) 0,680 mol/L
- 2) 13,6 mol/L
- 3) 1,00 mol/L
- 4) 39,5 mol/L
- 5) 55,5 mol/L
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte

Repérez la proposition correcte. Parmi les molécules dont la formule est donnée ci-après, on trouve une fonction amide dans :

- 1) la molécule A
- 2) la molécule B
- 3) la molécule C
- 4) la molécule D
- 5) la molécule E
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 12

5,0 litres d'une solution aqueuse contiennent 1,0 mole de phosphate de sodium (Na₃PO₄). Cette solution contient donc :

- 1) 0,40 mol d'ions phosphate (PO₄³-) par litre
- 2) 3,0 mol d'ions sodium (Na⁺) par litre
- 3) 1,0 mol d'ions sodium (Na⁺) par litre
- 4) 0,20 mol d'ions sodium (Na⁺) par litre
- 5) 0,60 mol d'ions sodium (Na⁺) par litre
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 13

Repérez la proposition correcte.

Le principe de le Châtelier

- 1) ne s'applique qu'aux réactions entre gaz
- 2) permet de calculer le pH d'une solution tampon
- 3) indique le sens de déplacement d'un équilibre chimique sous l'effet d'une perturbation
- 4) est utilisé pour déterminer la structure électronique des éléments
- 5) ne s'applique pas en solution aqueuse
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 14

Choisissez la proposition correcte.

En solution aqueuse,

- 1) l'anion HSO₄ peut se comporter comme un acide
- 2) l'anion HSO₄ peut se comporter comme une base
- 3) l'anion HSO₄ est un ampholyte
- 4) l'anion HSO₄ est l'acide conjugué de SO₄²-
- 5) l'anion HSO₄ est la base conjuguée de H₂SO₄
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

On considère le nucléide représenté par ${}^{17}_{Z}M$ (ou **M** représente le symbole de l'élément). Quelle doit être la valeur de Z pour qu'il s'agisse d'un des isotopes de l'oxygène ?

- 1) 6
- 2) 8
- 3) 16
- 4) 16,00
- 5) 2
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 16

Le diazote gazeux réagit avec le dioxygène gazeux pour former du monoxyde d'azote.

Parmi les expressions suivantes, quelle est celle qui peut correspondre à la constante d'équilibre de cette réaction ?

1)
$$K_c = \frac{[NO]}{[N_2] \times [O_2]}$$

$$K_{c} = \frac{2[NO]}{[N]^{2} \times [O]^{2}}$$

$$5) \quad K_{c} = \frac{\left[NO\right]^{2}}{\left[N\right]^{2} \times \left[O\right]^{2}}$$

$$2) \quad \mathbf{K}_{c} = \frac{\left[\mathbf{NO}\right]^{2}}{\left[\mathbf{N}_{2}\right] \times \left[\mathbf{O}_{2}\right]}$$

4)
$$K_c = \frac{2[NO]}{[N_2] \times [O_2]}$$

- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 17

Parmi les combinaisons ci-dessous, quelle est celle dont le nom correspond à la formule donnée :

- 1) Cl₂O: dioxyde de chlore
- 2) NO₂: monoxyde de diazote
- 3) SO₃ : oxyde de soufre (IV)
- 4) CrO₃: oxyde de chrome(III)
- 5) P₂O₅: hémipentoxyde de potassium
- Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 18

Parmi les masses atomiques relatives ci-dessous, quelle est celle qui est donnée avec 3 chiffres significatifs ?

- 1) H: 1,01 2) Li: 6,94 3) B: 10,8
- 4) Au: $1,97 \times 10^2$
- 5) Cs: 133
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 19

Choisissez la proposition correcte.

- 1) HgCl₂ est un composé contenant de l'antimoine
- 2) H₂Se est un composé contenant du soufre
- 3) OsO₄ est un composé contenant de l'osmose
- 4) Na₂CO₃ est un composé contenant du carbone
- 5) PCl₅ est un composé contenant du potassium
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Le benzène C_6H_6 réagit avec le dibrome pour former du bromobenzène C_6H_5Br et de l'acide bromhydrique. Lorsqu'on engage dans cette réaction 20,0 g de benzène et 50,0 g de dibrome

- 1) le dibrome est le réactant limitant
- 2) le benzène est le réactant limitant
- 3) le bromobenzène est le réactant limitant
- 4) l'acide bromhydrique est le réactant limitant
- 5) les réactants sont en proportions stœchiométriques
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 21

Repérez la proposition correcte.

Dans la réaction décrite par l'équation:

$$HCOONa(aq) + HCl(aq) \rightleftharpoons NaCl(aq) + HCOOH(aq)$$

- 1) les ions Cl⁻ (aq) sont des ions spectateurs
- 2) les ions Na⁺ (aq) sont des ions spectateurs
- 3) HCOO (aq) joue un rôle de base
- 4) HCOOH est l'acide conjugué de HCOO
- 5) L'eau est le solvant de la réaction
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 22

A 20 °C, l'heptane a une masse volumique de 684 g/dm³. Sa combustion est décrite par l'équation :

$$C_7H_{16}(1) + 11 O_2(g) \rightarrow 7 CO_2(g) + 8 H_2O(1)$$

Quel est le volume d'heptane (mesuré à 20 °C) dont la combustion complète produira 1,500 kg de H₂O ?

- 1) 1,52 L
- 2) 22,4 L
- 3) 2,87 L
- 4) 4,92 L
- 5) Il manque une donnée (la masse de CO₂ produit) nécessaire pour effectuer ce calcul
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 23

Identifiez la proposition correcte. Soyez attentif aux éventuelles tournures négatives.

Parmi les paires d'éléments reportées ci-dessous, la paire:

- 1) (S, Al) ne contient pas d'élément de la famille des halogènes
- 2) (O, F) ne contient que des éléments de la deuxième famille
- 3) (Sb, Sn) ne contient que des éléments de la famille des carbonides
- 4) (Na, Ca) ne contient que des éléments de la famille des alcalino-terreux
- 5) (Al, Ga) ne contient pas d'élément de la famille des terreux
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Parmi les ensembles d'éléments ci-après, quel est celui dont les électrons de cœur de chaque élément correspondant à la structure électronique du néon ?

- 1) Li, Na, K
- 2) He, Ne, Ar
- 3) Li, Be, B
- 4) P, S, Cl
- 5) K, Ca, Sc
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 25

Dans l'acide nitrique (nitrate d'hydrogène), quel est le nombre d'oxydation de l'atome d'azote?

- 1) (I)
- 2) (II)
- 3) (III)
- 4) (IV)
- 5) (V)
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 26

Le cuivre réagit avec une solution aqueuse de nitrate d'argent pour former une solution aqueuse de nitrate cuivre (II) et de l'argent métallique.

Repérez la proposition correcte.

Lorsqu'on engage 6,4 g de cuivre dans une réaction avec 1,00 L de solution de nitrate d'argent à 0,10 mol/L,

- 1) les deux réactants sont en proportions stoechiométriques
- 2) l'argent métallique est le réactant limitant
- 3) le nitrate cuivrique est le réactant limitant
- 4) le cuivre est le réactant limitant
- 5) le nitrate d'argent est le réactant limitant
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 27

Quelle est la proposition correcte?

- 1) Li⁺, Be²⁺ et B³⁺ ont la même structure électronique
- 2) P⁻, S et Cl⁺ ont la même structure électronique
- 3) O²⁻, N³⁻ et F ont la même structure électronique
- 4) P³⁻, S²⁻ et Cl⁻ ont la même structure électronique
- 5) H⁻, He et Li⁺ ont la même structure électronique
 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.

Question 28

Quelle est la formule du sulfure de sodium ?

- 1) NaHS
- 2) Na₂S₂
- 3) Na₂S
- 4) Na₂SO₃
- 5) Na₂SO₄
- 6) Toutes les propositions ci-dessus sont correctes.
- 7) Aucune des propositions ci-dessus n'est correcte.